Notes de projet (article complet à rédiger)
- Mise en place de tests automatiques de données
- Optimisation du time to market pour les devs
- Vérification automatique du travail des data engineers
- Data Warehouse: BigQuery
- Testing Framework: Great Expectations or custom Python
- Monitoring: Cloud Monitoring, custom dashboards
- Alerting: Slack, email notifications
- Orchestration: Airflow (test execution)
- Row count validation (expected vs actual)
- Schema validation (columns match expected schema)
- Freshness checks (data updated within expected time window)
- Null value checks (critical fields not null)
- Range validation (values within expected ranges)
- Referential integrity checks
- Alerting temps réel sur anomalies qualité données
- Automated verification of data engineer work
- Reduced time-to-market for new features
- Data quality incidents detected before impacting business
- 90% reduction in production data quality issues